Probing Higgs self-couplings at Future Colliders

Ambresh Shivaji

IISER Mohali, Punjab, INDIA

Mini-Workshop: Theory Physics Opportunities and Advanced Tools IAS (HKUST), January 10-11, 2019

Higgs couplings in the SM

The SM Higgs sector is governed by the following Lagrangian,

- EWSB \Rightarrow Higgs couplings with gauge bosons (κ_V), with fermions (κ_F) and Higgs self-couplings (κ_λ)
- How precisely do we know these couplings ?

$$\kappa_{\rm V} \sim 10\%, \ \kappa_{\rm F}^{\star} \sim 10 - 20\%,$$

 κ_{λ} : practically unconstrained!

 κ_{λ}

SM Higgs potential & New Physics

Higgs potential & EWSB in the SM,

The mass and the self-couplings of the Higgs boson depend only on λ and $v = (\sqrt{2}G_{\mu})^{-1/2}$,

$$m_H^2 = 2\lambda v^2; \ \lambda_3^{\text{SM}} = \lambda_4^{\text{SM}} = \lambda.$$

$$m_H = 125 \text{ GeV and } v \sim 246 \text{ GeV}, \Rightarrow \boxed{\lambda \simeq 0.13}$$

Presence of new physics at higher energy scales can contribute to the Higgs potential and modify the Higgs self-couplings.

Independent measurements of λ_3 and λ_4 are crucial.

Direct determination of Higgs self-couplings

Information on λ_3 and λ_4 can be extracted by studying multi-Higgs production processes.

[Frederix et al. '14, 1408.6542]

Very challenging due to small cross sections: ~ 33 fb (*HH*), ~ 0.1 fb (*HHH*) Compare it with the single Higgs production (gg \rightarrow H) cross section: ~ 50 pb

Current experimental sensitivity

ATLAS (HL-LHC, 2*b*2γ): [ATL-PHYS-PUB-2017-001],

 $\kappa_3 < -0.8$ and $\kappa_3 > \sim 7.7$

Bounds are sensitive to κ_t *value.*

Are there alternative methods of probing λ_3 and λ_4 ?

Indirect determination of λ_3

• λ -dependent corrections to single Higgs processes

- > Gorbahn, Haisch: 1607.03773
- > Degrassi, Giardino, Maltoni, Pagani: 1607.04251
- > Bizon, Gorbahn, Haisch, Zanderighi: 1610.05771
- > Di Vita, Grojean, Panico, Riembau, Vantalon: 1704.01953
- > Maltoni, Pagani, AS, Zhao: 1709.08649
- λ -dependent corrections in electroweak precision observables

- > Degrassi, Fedele, Giardino: 1702.01737
- > Kribs, Maier, Rzehak, Spannowsky, Waite: 1702.07678

Indirect determination of λ_4

Single Higgs

Current reach at the LHC

Studies have confirmed that indirect bounds on λ_3 can be competitive with the direct ones. A one parameter fit using 8 TeV LHC data (1607.04251) \Rightarrow

Future projections (1P): constraints on κ_3 ($\kappa_t = \kappa_V = 1$)

ATLAS-HL: S1 (stat.), S2 (stat. + sys. + th.) Different production channels

- In S1 the fit is dominated by the *gg*F-like channel. In S2 the $t\bar{t}H$ -like channel provides best constraints for $\kappa_3 < 1$.
- Improvements in bounds due to the use of differential information in $t\bar{t}H$ are more visible in S2.
- Differential information in ggF (not yet available) would be useful.

Future projections(1P): constraints on κ_3 in presence of κ_t , κ_V

- Inclusion of more parameters to the fit relaxes the constraints especially in the region $\kappa_3 < 1$.
- Due to κ_t dependence of the gluon fusion channel, the constraints in presence of κ_t are stronger than those in presence of κ_V .
- Differential information from VH and ttH do improve the bounds in S2.

Future projections (2P): constraints on κ_3 and κ_t in S2

Future projections (2P): constraints on κ_3 and κ_V in S2

CMS Projections: HL-LHC

tH + ttH

[CMS-PAS-FTR-18-020]

Double Higgs

Constraints at HL-LHC and at 100 TeV: 1P

$$\begin{split} \sigma_{\rm NLO}^{\rm pheno} &= \sigma_{\rm LO} + \Delta \sigma_{\bar{c}_6} + \Delta \sigma_{\bar{c}_8} \;, \\ \sigma_{\rm LO} &= \sigma_0 + \sigma_1 \bar{c}_6 + \sigma_2 \bar{c}_6^2 \;, \\ \Delta \sigma_{\bar{c}_6} &= \bar{c}_6^2 \Big[\sigma_{30} \bar{c}_6 + \sigma_{40} \bar{c}_6^2 \Big] + \tilde{\sigma}_{20} \bar{c}_6^2 \;, \\ \Delta \sigma_{\bar{c}_8} &= \bar{c}_8 \Big[\sigma_{01} + \sigma_{11} \bar{c}_6 + \sigma_{21} \bar{c}_6^2 \Big] \;, \end{split}$$

[1811.12366] (See also [1810.04665])

Constraints at HL-LHC and at 100 TeV: 2P

[1811.12366]

Constraints at 100 TeV: HH vs HHH

[1811.12366]

Prospects at e^+e^- colliders

Indirect determination of λ_3

We can be sensitive to λ_3 in higher order EW corrections in observables of interest: McCullough: 1312.3322.

 $e^+e^- \rightarrow Z + H$

For $\sqrt{s} = 240$ GeV and $\mathcal{L} = 10$ ab⁻¹, $\kappa_3 \sim 28\%$. (See also [1711.03978,1802.07616,1805.03417])

Direct determination of λ_3

T-odd Asymmetries

 $\lambda_3 = \lambda_3^{\rm SM} (1 + \delta_h)$

[1812.01576]

SM and BSM asymmetries

[1812.01576]

Direct constraint on trilinear from the T-odd asymmetries

[1812.01576]

- Among all the couplings of the Higgs boson, the Higgs self-couplings are poorly known.
- Alternative approaches are being actively sought-for to constrain them using precisely measured observables at the LHC and future colliders.
- A number of studies have shown the complementarity between direct and indirect approaches to probe Higgs self-couplings.
- Efforts are needed to improve the reach by including all the relevant higher order corrections in single and double Higgs production processes.

Thank You.